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Abstract —An efficient technique for deriving the space-domain Green’s

iunction due to an arbitrarily oriented current in shielded, mrdtilayer

substrate structures is presented. The derived Green’s funetiou is then

used to find the dispersion characteristics of single and symmetric coupled

fine MfS slow-wave structures. These results are compared to published

theoretical and experimental data to verify the theory presented.

I. INTRODUCTION

T HERE HAS been considerable effort devoted to the

design and realization of monolithic microwave inte-

grated circuits (MMIC’S) for use in the ~ >20 GHz region

[1]. Once fabricated, monolithic circuits are very difficult

to tune for optimum performance and this is a major

drawback [1], [2]. Accurate theoretical models of MMIC

components are required so that device performance can

be predicted confidently, thus avoiding a time-consuming

and costly production cycle. Such characterization requires

a mathematically rigorous solution for the fields in a

particular structure. The use of a Green’s function is,

therefore, appropriate. Generalized techniques for deriving

the spectral-domain or space-domain Green’s function for

multilayer substrates have been given, but only current

densities which are parallel to the layer interfaces are

allowed in these approaches [3]–[5]. These techniques find

useful application in the analysis of planar integrated

circuits and antennas embedded in layered regions. In [6],

the Green’s function for a rectangular waveguide filled

with two dielectrics is given. The inhomogeneous system of

equations encountered in [6] increases substantially with

the number of layers, thus making the required algebra

difficult and time consuming. It is the purpose of this
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paper to outline a method for deriving the space-domain

Green’s function for an arbitrary oriented current in a

rectangular waveguide inhomogeneously filled with an ar-

bitrary number of lossy, isotropic dielectric slabs. The

approach given here is based on the principle of scattering

superposition combined with appropriately chosen mag-

netic and electric vector potential:$. The major advantages

of this work are (i) the developed method for evaluating

the Green’s function can be applied to a current of any

orientation and (ii) the solution for unknown-amplitude

coefficients always reduces to having to solve 2 X 2 inho-

mogeneous sets of equations, regardless of the number of

dielectric layers. The scattering parameters of planar

stripline discont,inuities occurring, in shielded, multilayer

substrate circuitry may be numerically characterized by

following the procedure given in [7] combined with the

Green’s function obtained here. Research in this direction

is proceeding and much remains to be done [7]–[10].

MIS slow-wave structures have been studied by several

researchers and are used widely in related MIC’S. The

slowing effect can be applied to many devices, among

them delay lines, phase shifters, and tunable filters. Both

single and coupled line geometries have been analyzed

using full-wave techniques [11]-.[1 5]. The two rigorous

methods which lhave been applied to these structures in the

past, namely spectral-domain ~idysk and finite element

method, can be somewhat cumbersome to work with. The

spectral approach requires the use of current basis func-

tions which have well-behaved Fourier transforms, and the

finite element method sometimes yields spurious mode

results which are difficult to interpret. The present tech-

nique, which will be discussed in more detail later, suffers

from neither of these drawbacks. The Green’s function for

an inhomogeneously filled rectangular waveguide derived

using the present theory is used to find dispersion charac-

teristics for various slow-wave transmission lines. These

results are compared to published theoretical and experi-
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Fig. 1. Representation of inhomogeneously loaded rectangular wave-
guide as the superposition of parallel-plate structures.

ment results [16] to establish the validity and usefulness of

the analytical method given in this paper.

II. THEORY

The principle of scattering superposition was first dis-

cussed by Tai [17] and recently was used to present the

space-domain Green’s function for an inhomogeneously

filled waveguide [6]. In addition to being a somewhat

tedious approach, the vector potentials used in [6] to

generate the electromagnetic fields are the ~, N, and L
functions described in [17]. The magnetic and electric

vector potentials, A and F, respectively, [18] are used in

the present work and the electromagnetic fields are ob-

tained as

1
E= Avx F–juA+ —vv-A (la)

< japc

1 1
H=–vx A+joF– —vv. F. (lb)

P japc

Fig. 1 shows an infinitesimal current source located

within a rectangular waveguide that is inhomogeneously

loaded with N isotropic, lossy dielectric layers. This wave-

guide is represented as the superposition of three parallel-

plate structures. We begin by considering the total field
maintained by J as a superposition of primary and scat-

tered fields.

Primary electromagnetic fields are generated from the

primary vector potentials Ap and Fp, and must satisfy

only the boundary conditions imposed by the equivalent

parallel-plate waveguide containing J. In general, J will

have one component normal to layer interfaces, 6MJ., and

one component tangential to them, dfJf. For an arbitrarily

oriented electric current in the n th layer, the relevant

primary field boundary conditions at the source are

dnx(Ep> –Ep< )=~ (2a)

a.X( Hp>–Hp<)=L?tJt (2b)

V2AP+ k2Ap= –p;nJn (2C)

where the ( ~ ) represents (x ~ x’). Separate application of

equations (2) for each component of J yields the desired

primary field terms. Scattered fields in the n th layer are

derived from A $“) and F$”) where

Vz~~)+kzA~)=O (3a)

V z@nj + kz@@ =0, n=l,2,. ... N. (3b)

A ‘n) and F,(n) must satisfy the boundary conditions im-

p~sed by the shorted, dielectric-filled parallel-plate struc-

tures. Primary fields result directly from J and exist only

in the layer where J is nonzero. The scattered fields result

when the dielectric layers and conducting walls are added

to the primary structure.

The total field in any layer maintained by J must satisfy

the usual source and interface boundary conditions. Both

primary and scattered potentials are chosen to be

x-directed so that the resulting LSM and LSE fields decou-

ple [3]. The proper eigenfunction expansions for these
fields may now be deduced. The primary potentials are

The scattered potentials are written as

(5b)

where i denotes the layer and

I=N, i=n+l,. ... N

I=n, wheni=n

1=1, i=l ““. ,n–l.
J is assumed to be in the n th laye~ and Al) and F~l) are

the unknown scattered vector potential amplitude coeffi-

cients in the lth layer, where 1=1, n, N. All boundary

conditions in the rectangular waveguide are satisfied ex-

cept those at x = XT and x = XB. These boundary condi-

tions are written as

‘J$i +E:,”)= E;,”* 1) (6a)

()X=XT
where the ( < ) and ( + ) are for

X=XB ‘ The primary

fields are obtained from (1) with A = 6XAXP and F= tixFx .

The scattered fields are obtained similarly with A = dxxl$
and F=6xF~), i=l,2 . . . , N. Since LSM and LSE fields

are orthogonal [18], the inhomogeneous 8 X 8 set of equa-

tions resulting from (6) decouples into four inhomoge-

neous 2 X 2 sets of equations. Solving for A~~l, F~N), A ~),

F~n), A!), and F#) and combining with (la), (4), and (5)

yields the integral representation of the electric field any-
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where in the waveguide:

‘~mdkz~~e~inE(X> y, Zlx’, y’, z’) = Z _
mm

.(kzlx, ylx’, y’)e-~~g(z-”~ (7)

where fic is a unit vector along the direction of the electric

field.

The remaining task is to complete the inverse Fourier

transform of (7). This integral may be evaluated via the

calculus of residues since no branch points exist in the

integrand. In general, d~ is made up of LSM and LSE

contributions. For both LSM and LSE modes, the inver-

sion contour in the k, plane is closed in the lower half for
z < z’ and in the upper half for z > z’. The distribution of

poles in he k, plane is symmetric about the origin. Com-

pleting the inverse transform of (7) for each component of

the electric field yields the dyadic Green’s function:

~,(xlx’, yly’, zIz’) = ~ ~~~~”+ ~ ~~~E (8a)
nm pm

where the electric field due to an arbitrary electric current

is now given by

E(X> y, z) =JJJGE(X, y,zlx’, y’, z’)

‘~(X’, y’, Z’) dx’dy’dz’. (8b)

Equations (8a) and (8b) give the space-domain Green’s

function, which is useful for three-dimensional problems.

For the analysis of two-dimensional problems, fields de-

scribed in the form of (7) are appropriate. The method

presented here may also be applied to structures contain-

ing an arbitrary number of electric and magnetic sources.

III. DISPERSION ANALYSIS

The shielded microstrip structures illustrated in Fig. 2

are characterized by their respective coupled integral equa-

tions:

(9)

The components of the Green’s matrices are derived in

integral form for a three-layer waveguide, as in (7), with

the infinitesimal source located in region (2). The expan-

sions for Jy and J= are chosen to satisfy their respective

edge conditions [19]. The convolution integrals resulting

from (9) are evaluated in closed form. Using one expan-

sion term for J,, and J, and applying the Galerkin’s

procedure to (9) ~hows -

cl

][1o
dl =()

(lo)

kd
w

—. E=eo

1.50 rnm
I ~m C=4C0 _o= o

1

E=12C0 U*O

250pm

l— 10.00 rnm ------i

(a)

(b)

Fig. 2. Geometry of single and coupled microstrip slow-wave struc-
tures.

where c1 is the unknown amplitude coefficient for the first

expansion term of & and dl similarly results from .J,.

For both single and coupled line structures the expres-

sions for Plm, Qlm, S1m, and Ulm are relatively simple

combinations of Bessel and trigonometric functions. These

are given in the Appendix. Setting the determinant of the

current amplitude matrix to zero and solving for its roots

yields the complex microstrip propagation constant k,=

B – jq for the respective structures.

IV. NUMERICAL l& SULTS

The dispersion characteristics g,iven in this section are

for the single and coupled strip NIIS structures illustrated

in Fig. 2. The pertinent dimensions are also given there.

Re@on 1 is the conducting Si substrate with c,1 = 12 and

region 2 is the Si02 insulating region with 6,2 = 4. The

effect of the induced conduction current is incorporated

into a complex permittivity in region 1. The normalized

wavelength and the attenuation constant for different cases

are plotted in Figs. 3–10. Good convergence was obtained

using one expansion term for the microstrip current com-

ponents and M = 501 in the four truncated series in (10).

Roots of the matrix were found using Mueller’s method

with deflation.

Figs. 3 and 4 show a compariscm of phase and attenua-

tion constants between this theory, spectral analysis, finite

element methodl, and experimental results for a narrow

single MIS line with w =160 pm, Dispersion characteris-

tics for a wide single MIS line with w = 600 pm are

compared with other full-wave methods, parallel-plate

model results, and experimental results in Figs. 5 and 6.

Good agreement between this theory, experiment, and

other full-wave methods for A \~ ~ and a is found in all

cases studied for the single MIS line with w =160 pm.

Results for the wider strip, w = 600 pm, show discrepan-

cies between his theory and the spectral-domain approach
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Fig. 3. Comparison of normalized wavelength for single microstrip
(w= 160 pm) with spectral-domain analysis [11], finite element method
[12], and experimental results [16].
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Fig. 4. Comparison of attenuation constant for single rnicrostrip (w=
160 pm) with spectral-domain anafysis [11], finite element method [12],
and experimental results [16].

for larger substrate conductivities. For the case u = 1000

and f = 1 GHz, the spectral analysis finds a very low

normalized wavelength of about 0.04. This value is unac-

ceptable considering that the Si substrate is five skin

depths thick. As a result, the electromagnetic fields are

virtually shielded from the semiconducting layer. This

drives the line into the skin effect and not the slow-wave

mode. Results derived by the method presented in this

paper indicate such a tendency. Curves generated from the

parallel-plate analysis (applicable to wide rnicrostrips) [16]

are also plotted in Figs. 5 and 6 and are in agreement with

our theoretical data.
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Fig. 5. Comparison of normalized wavelength for single microstrip
(w= 600 pm) with spectral-domain analysis [11], experimental results
[16], and parallel-plate model [16].
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Fig. 6. Comparison of attenuation constant for single microstrip (w=
600 pm) with spectral-domain anrdysis [11], experimental results [16],
and parallel-plate model [16].

Discrepancies between this theory and experimental re-

sults are also evident for the wide-strip case. Consequently,

to verify the accuracy of this approach when applied to

wide strips, a comparison of normalized dominant mode

phase constant for the w/h = 2 structure analyzed in [20]

was made. Virtual exact ameement was found for the



LIVERNOIS AND KATEHI : A GENERALIZED METHOD FOR DERIVING THE SPACE-DOMAIN GREEN’S FUNCTION 1765

0.:

A
TO

o

(

[15]
W=S=160#m.—

— THIS THEORY
/

/

/’,/

///[
Cr=0.05 (h cm)-l / ,/

/

>) ,//,/,,/
ODD

/
/.—--, /-—. - —

,
_-

———

J 1 I Ill 1 , , I I 111 1 1 ! 1 t 1 I

0.0I 0.1 10

FREQUENCY (GHz)

Fig. 7. Comparison of normalized wavelength for even- and odd-mode
excitation of coupled microstrip lines with spectral-domain analysis [15].
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Fig. 8. Comparison of attenuation constant for even- and odd-mode
excitation of coupled microstrip lines with spectral-domain analysis [15].

entire frequency range studied (1 –100 GHz). Phase and

attenuation constants for the coupled line MIS structure

are shown in Figs. 7 and 8. The propagation characteristics

found using this theory compare very well with the spectral

analysis results. Fig. 7 shows A/A ~ for even- and odd-mode

excitation and Fig. 8 shows the comparison of a for even-

and odd-mode excitation.

The last two sets of data, Figs. 9 and 10, show the

frequency dependence of phase and attenuation constants

for the first two modes of the single MIS line with w =160

pm and the dominant mode of the rectangular waveguide

(no strip). These results show a clear correlation between

the second microstrip mode and dominant waveguide mode

dispersion characteristics over the entire frequency range

studied. This phenomenon was also reported in [20] for a

lossless dielectric substrate.
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Fig. 9. Frequency–phase constant characteristics or frost two modes of
single microstrip and dominant mode of inhomogeneously filled wave-
guide.
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Fig. 10. Frequency–attenuation constant characteristics for first two
modes of single microstrip and dominant mode of inhomogeneously
filled waveguide.

The amount of time required tc} find a solution to the

determinantal equation (10) ranged from 55 seconds for

small values of the loss tangent in region (1) (i.e., 0 = 0.05,
f= 1 GHz) to 285 seconds for larger values (i.e., o = 1000,

~= 0.5 GHz). These calculations were done on a personal

computer.

V. CONCLUSION

This paper has presented a simlple, efficient tech~que

for deriving a physically appealinf~ space-domain Green’s

function in a shielded layered region containing an arbi-

trary number of magnetic and/or (electric sources. Obtain-
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ing unknown amplitude coefficients reduces to the solution

of 2 x 2 inhomogeneous sets of equations, depending on

the number of different layers containing sources. The

Green’s function for an inhomogeneously filled waveguide

was derived and used to find dispersion characteristics for

various MIS slow-wave structures. The corresponding

characteristic equations are given in an appendix. The

accuracy of the results was verified by a comparison with

other published data, thus establishing the validity of the

theory presented.

APPENDIX

EXPRESSIONS FOR Plm, Qlm, Slm, AND Ulm FOR

SINGLE AND COUPLED LINES

A. Single MIS Line

B. Coupled iVIIS Lines

Even mode:

PIWZ= – CIC~CjK1

Ulw, = C1C;C;K2

QItn = L = CIC2C3C:K3 -

Odd mode:

P1m = – CIC:C;K1

Ulm = C1C:C~K2

Q~m = h = CIC2C3C?K3

where

C1=’[F’F’I
()

mvw
C2=J0 —

2’

()
mvw

sin —

C3=[(%L21
[

C4=COS ;(S+W) 1
[C5=sin ~(s+w) 1

and

K2=[(kf)g)kf)TLsM-(;~TLsE]

K3=(%)’=[[%)TLSTLSE
N LSM

T—LSM =
D LSM

N LSE
T—LSE =

D LSE

N LSM = tan ( k~3)d3) [ cr1k~2)tan ( k~)d2 )

+ tr,k~) tan (k~l~dl)]

N LSE = tan (kfJd3) [k~2) tan (k$)dl) + k:) tan ( k~?d,)]

D ,sM = cr,kj3) tan (k~3)d3) [cr2k$1)tan (k$l)dl) tan (k$2)d~)

– crlkf)] – kf) [ ~Y1k~2)tan ( k~2)d2) + cr,k~l) tan ( k~)dl)]

D – k13)[k~2) tan (k(l)dl) + k(l) tan (k~2)d2)] + k~2)
LSE— X x .x x

. tan (k~’)d,) [k~l) – k$?) tan (k$l)dl) tan (k~2)d2)]

and
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