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A Generalized Method for Deriving the
Space-Domain Green’s Function in a
Shielded, Multilayer Substrate
Structure with Applications

to MIS Slow-Wave
Transmission Lines

THOMAS G. LIVERNOIS anp PISTI B. KATEHI, MEMBER, IEEE

Abstract — An efficient technique for deriving the space-domain Green’s
function due to an arbitrarily oriented current in shielded, multilayer
substrate structures is presented. The derived Green’s function is then
used to find the dispersion characteristics of single and symmetric coupled
line MIS slow-wave structures. These results are compared to published
theoretical and experimental data to verify the theory presented.

1. INTRODUCTION

HERE HAS been considerable effort devoted to the

design and realization of monolithic microwave inte-
grated circuits (MMIC’s) for use in the f > 20 GHz region
[1]. Once fabricated, monolithic circuits are very difficult
to tune for optimum performance and this is a major
drawback [1], [2]. Accurate theoretical models of MMIC
components are required so that device performance can
be predicted confidently, thus avoiding a time-consuming
and costly production cycle. Such characterization requires
a mathematically rigorous solution for the fields in a
particular structure. The use of a Green’s function is,
therefore, appropriate. Generalized techniques for deriving
the spectral-domain or space-domain Green’s function for
multilayer substrates have been given, but only current
densities which are parallel to the layer interfaces are
allowed in these approaches [3]-[5]. These techniques find
useful application in the analysis of planar integrated
circuits and antennas embedded in layered regions. In {6],
the Green’s function for a rectangular waveguide filled
with two dielectrics is given. The inhomogeneous system of
equations encountered in [6] increases substantially with
the number of layers, thus making the required algebra
difficult and time consuming. It is the purpose of this
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paper to outline a method for deriving the space-domain
Green’s function for an arbitrarily oriented current in a
rectangular waveguide inhomogeneously filled with an ar-
bitrary number of lossy, isotropic dielectric slabs. The
approach given here is based on the principle of scattering
superposition combined with appropriately chosen mag-
netic and electric vector potentials, The major advantages
of this work are (i) the developed method for evaluating
the Green’s function can be applied to a current of any
orientation and (i) the solution for unknown-amplitude
coefficients always reduces to having to solve 2X2 inho-
mogeneous sets of equations, regardless of the number of
dielectric layers. The scattering parameters of planar
stripline discontinuities occurring in shielded, multilayer
substrate circuitry may be numerically characterized by
following the procedure given in [7} combined with the
Green’s function obtained here. Research in this direction
is proceeding and much remains to be done [7]-[10].

MIS slow-wave structures have been studied by several
researchers and are used widely in related MIC’s. The
slowing effect can be applied to many devices, among
them delay lines, phase shifters, and tunable filters. Both
single and coupled line geometries have been analyzed
using full-wave techniques [11]-{15]. The two rigorous
methods which have been applied to these structures in the
past, namely spectral-domain analysis and finite element
method, can be somewhat cumbersome to work with. The
spectral approach requires the use of current basis func-
tions which have well-behaved Fourier transforms, and the
finite element method sometimes yields spurious mode .
results which are difficult to interpret. The present tech-
nique, which will be discussed in more detail later, suffers
from neither of these drawbacks. The Green’s function for
an inhomogeneously filled rectangular waveguide derived
using the present theory is used to find dispersion charac-
teristics for various slow-wave transmission lines. These
results are compared to published theoretical and experi-
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Fig. 1. Representation of inhomogeneously loaded rectangular wave-

guide as the superposition of parallel-plate structures.

ment results [16] to establish the validity and usefulness of
the analytical method given in this paper.

II. THEORY

The principle of scattering superposition was first dis-
cussed by Tai [17] and recently was used to present the
space-domain Green’s function for an inhomogeneously
filled waveguide [6]. In addition to being a somewhat
tedious approach, the vector potentials used in [6] to
generate the electromagnetic fields are the M, N, and L
functions described in [17]. The magnetic and electric
vector potentials, 4 and F, respectively, [18] are used in
the present work and the electromagnetic fields are ob-
tained as

(1a)

1 1
E=-V XF- jud+—vvV-A
€ Jwpe

H=lv xA+ij—f1—VV-F. (1b)
p Jope

Fig. 1 shows an infinitesimal current source located
within a rectangular waveguide that is inhomogeneously
loaded with N isotropic, lossy dielectric layers. This wave-
guide is represented as the superposition of three parallel-
plate structures. We begin by considering the total field
maintained by J as a superposition of primary and scat-
tered fields.

Primary electromagnetic fields are generated from the
primary vector potentials A4, and F,, and must satisfy
only the boundary condmons 1mposed by the equivalent
parallel-plate waveguide containing J. In general, J will
have one component normal to layer interfaces, 4,J,, and
one component tangential to them, d,J,. For an arbitrarily
oriented electric current in the nth layer, the relevant
primary field boundary conditions at the source are

an(Ep>—EP<)=O (2a)
d,x(H,. -H,_ )= (2b)

(2)

where the ( 2 ) represents (x 2 x’). Separate application of
equations (2) for each component of J yields the desired
primary field terms. Scattered fields in the nth layer are

VA, + kA, =—pd,J,

LIEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO. 11, NOVEMBER 1989

derived from 4" and F™ where
VAP + kA =0 (3a)
VE" + kR =0, n=12,---,N. (3b)

A and F(™ must satisfy the boundary conditions im-
posed by the shorted, dielectric-filled parallel-plate struc-
tures. Primary fields result directly from J and exist only
in the layer where J is nonzero. The scattered fields result
when the dielectric layers and conducting walls are added
to the primary structure.

The total field in any layer maintained by J must satisfy
the usual source and interface boundary conditions. Both
primary and scattered potentials are chosen to be
x-directed so that the resulting LSM and LSE fields decou-
ple [3]. The proper eigenfunction expansions for these
fields may now be deduced. The primary potentials are

1
A= [ ak (L, (e, yIx', y)e CT - (4a)
» 2q

*p

oo} ~ ’
- _-[ deZf‘C (k}:l‘x’ y!xl’ y’)e_jk2(272)' (4b)
2m —® m o
The scattered potentials are written as

1
AV =— f dk ZA(”a(’)(k |x, y|x’, y')e JRtz=2)
¥ Qg

(5a)
1 e ~ ,
FO == [ d TECLO (kofx. ylx', y)e bt
s 277- — m m
(5b)
where / denotes the layer and
I=N i=n+1l,--,N
I=n, wheni=n
[=1, i=1,---,n—-1.

J is assumed to be in the nth layer and A and E$ are
the unknown scattered vector potential amplitude coeffi-
cients in the /th layer, where /=1,n, N. All boundary
conditions in the rectangular waveguide are satisfied ex-
cept those at x = x; and x = x,. These boundary condi-
tions are written as

(n) (n) — +1
Eypn% + Eysn B E.ésn )

(6)

E0Y + E( = B+ (6b)
H{L + H{" = H{?=D (6c)
HOY + H(P = H D (6d)

where the (2) and () are for X =x

fields are obtained from (1) with 4 =4, 4, and F=4, F, .

The scattered fields are obtained similarly Wlth A=4, A(I’))
and F=4 F(’), i=1,2---,N. Since LSM and LSE flelds
are orthogonal [18], the 1nhomogeneous 8% 8 set of equa-
tions resulting from (6) decouples into four inhomoge-
neous 2 X2 sets of equations. Solving for AV, F(V), 40,
F{M, AD, and F{Y and combining with (1a), (4), and ®)
ylelds the 1ntegra1 representation of the electric field any-

=Xxr
) The primary
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where in the waveguide:

1 (o
E(x,y,z|x',y,2) = 5;/ dk,y 4.6,

]

Ak fx, ylx’, y)e k=D (7)

where 4, is a unit vector along the direction of the electric
field.

The remaining task is to complete the inverse Fourier
transform of (7). This integral may be evaluated via the
calculus of residues since no branch points exist in the
integrand. In general, € is made up of LSM and LSE
contributions. For both LSM and LSE modes, the inver-
sion contour in the k, plane is closed in the lower half for
z <z’ and in the upper half for z > z’. The distribution of
poles in he k, plane is symmetric about the origin. Com-
pleting the inverse transform of (7) for each component of
the electric field yields the dyadic Green’s function:

Go(xlx, yly212) = L L GEM + Y Y GISE (8a)
n m p m

where the electric field due to an arbitrary electric current
is now given by

E(X, )’72) =fff5E(x’y,le/’yl’Z,)
J(x',y', 2"y dx'dy'dz’.  (8b)

Equations (8a) and (8b) give the space-domain Green’s
function, which is useful for three-dimensional problems.
For the analysis of two-dimensional problems, fields de-
scribed in the form of (7) are appropriate. The method
presented here may also be applied to structures contain-
ing an arbitrary number of electric and magnetic sources.

III. DISPERSION ANALYSIS

The shielded microstrip structures illustrated in Fig. 2
are characterized by their respective coupled integral equa-

tions:
G, G . g, _ E,
GZ,V GZZ ']Z EZ ’

The components of the Green’s matrices are derived in
integral form for a three-layer waveguide, as in (7), with
the infinitesimal source located in region (2). The expan-
sions for J, and J, are chosen to satisfy their respective
edge conditions [19]. The convolution integrals resulting
from (9) are evaluated in closed form. Using one expan-
sion term for J, and J, and applying the Galerkin’s
procedure to (9) shows

)

- M M ]
Z le Z le
=1 Wcl)d=d1 ¢ _—[0]
M M d| 1o
Z Slm Z Ulm
m=1 m=1

odd

ogd

(10)
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Fig. 2. Geometry of single and coupled microstrip slow-wave struc-
tures.

where ¢, is the unknown amplitude coefficient for the first
expansion term of J,, and d; similarly results from J..

For both single and coupled line structures the expres-
sions for P,,, Q,,, S.. and U, are relatively simple
combinations of Bessel and trigonometric functions. These
are given in the Appendix. Setting the determinant of the
current amplitude matrix to zero and solving for its roots
yields the complex microstrip propagation constant k, =
B — ja for the respective structures.

IV. NUMERICAL RESULTS

The dispersion characteristics given in this section are
for the single and coupled strip MIS structures illustrated
in Fig. 2. The pertinent dimensions are also given there.
Region 1 is the conducting Si substrate with ¢, =12 and
region 2 is the SiO, insulating region with €,, =4. The
effect of the induced conduction current is incorporated
into a complex permittivity in region 1. The normalized
wavelength and the attenuation constant for different cases
are plotted in Figs. 3-10. Good convergence was obtained
using one expansion term for the microstrip current com-
ponents and M =501 in the four truncated series in (10).
Roots of the matrix were found using Mueller’s method
with deflation.

Figs. 3 and 4 show a comparison of phase and attenua-
tion constants between this theory, spectral analysis, finite
element method, and experimental results for a narrow
single MIS line with w =160 pm. Dispersion characteris-
tics for a wide single MIS line with w=600 um are
compared with other full-wave methods, parallel-plate
model results, and experimental results in Figs. 5 and 6.
Good agreement between this theory, experiment, and
other full-wave methods for A /A, and « is found in all
cases studied for the single MIS line with w =160 pm.
Results for the wider strip, w =600 pm, show discrepan-
cies between his theory and the spectral-domain approach
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Fig. 3. Comparison of normalized wavelength for single microstrip Fig. 5. Comparison of normalized wavelength for single microstrip

(w =160 pm) with spectral-domain analysis [11], finite element method

[12], and experimental results [16].
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Fig. 4. Comparison of attenuation constant for single microstrip (w =
160 pm) with spectral-domain analysis [11], finite element method [12],
and experimental results {16].

for larger substrate conductivities. For the case ¢ =1000
and f=1 GHz, the spectral analysis finds a very low
normalized wavelength of about 0.04. This value is unac-
ceptable considering that the Si substrate is five skin
depths thick. As a result, the electromagnetic fields are
virtually shieclded from the semiconducting layer. This
drives the line into the skin effect and not the slow-wave
mode. Results derived by the method presented in this
paper indicate such a tendency. Curves generated from the
parallel-plate analysis (applicable to wide microstrips) [16]
are also plotted in Figs. 5 and 6 and are in agreement with
our theoretical data.

(w =600 pm) with spectral-domain analysis [11], experimental results
[16], and parallel-plate model [16].
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Fig. 6. Comparison of attenuation constant for single microstrip (w =
600 pm) with spectral-domain analysis [11], experimental results [16],
and parallel-plate model [16].

Discrepancies between this theory and experimental re-
sults are also evident for the wide-strip case. Consequently,
to verify the accuracy of this approach when applied to
wide strips, a comparison of normalized dominant mode
phase constant for the w/h = 2 structure analyzed in [20]
was made. Virtual exact agreement was found for the
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Fig. 7. Comparison of normalized wavelength for even- and odd-mode
excitation of coupled microstrip lines with spectral-domain analysis [15].
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Fig. 8. Comparison of attenuation constant for even- and odd-mode
excitation of coupled microstrip lines with spectral-domain analysis [15].

entire frequency range studied (1-100 GHz). Phase and
attenuation constants for the coupled line MIS structure
are shown in Figs. 7 and 8. The propagation characteristics
found using this theory compare very well with the spectral
analysis results. Fig. 7 shows A /A for even- and odd-mode
excitation and Fig. 8 shows the comparison of a for even-
and odd-mode excitation.

The last two sets of data, Figs. 9 and 10, show the
frequency dependence of phase and attenuation constants
for the first two modes of the single MIS line with w =160
wm and the dominant mode of the rectangular waveguide
(no strip). These results show a clear correlation between
the second microstrip mode and dominant waveguide mode
dispersion characteristics over the entire frequency range
studied. This phenomenon was also reported in [20] for a
lossless dielectric substrate.
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Fig. 10. Frequency-attenuation constant characteristics for first two
modes of single microstrip and dominant mode of inhomogeneously
filled waveguide.

The amount of time required to find a solution to the
determinantal equation (10) ranged from 55 seconds for
small values of the loss tangent in region (1) (i.e., o = 0.05,
f =1 GHz) to 285 seconds for larger values (i.e., ¢ =1000,
f =0.5 GHz). These calculations were done on a personal
computer.

V. CONCLUSION

This paper has presented a simple, efficient technique
for deriving a physically appealing space-domain Green’s
function in a shielded layered region containing an arbi-
trary number of magnetic and /or ¢lectric sources. Obtain-



1766

ing unknown amplitude coefficients reduces to the solution
of 2X2 inhomogeneous sets of equations, depending on
the number of different layers containing sources. The
Green’s function for an inhomogeneously filled waveguide
was derived and used to find dispersion characteristics for
various MIS slow-wave structures. The corresponding
characteristic equations are given in an appendix. The
accuracy of the results was verified by a comparison with
other published data, thus establishing the validity of the
theory presented.

APPENDIX
EXPRESSIONS FOR P, ., O, S1,,» AND Uj,, FOR
SINGLE AND COUPLED LINES

A. Single MIS Line

Py, = - C1C32K1
Uim= C1C22K2
Q1 = 81, = CGGKS.
B. Coupled MIS Lines
Even mode:
P, =~ C1C32C42 K,
U= C1C22 C42K 2
Q1 =51,= C1C2C3C42K 3-
Odd mode:
— CiCICIK,
U,,= C1C22 C52K 2
Q1 =S1m= C1C2C3C52K3
where
J2epg
" T mm 2 |
b —) + k2
(5
maw
G = 0( 2h )
mmaw
) sm( = )
- 2
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and
ma\2
eene( 7
K, = k2 Tism— kzzTLSE
0
i kPkOk? ma\2
Kzz\_ T‘ TLSM_<T) Tige
0
mm kPk®
Ky= (7) z ©2 TismtTise
0
T Nism
LSM Dy
Nise
T;
LSE Dyss

Nygy = tan (k®d,) [e,lk @ tan (kPd, )
+e, kP tan (k®d, )]
Nygp = tan (k9d;) [k @ tan (kPd, ) + kD tan (£ Pd,)]
Dygy = ¢, k& tan (k9d;)[ e,k tan (kPd, ) tan (£ Pd,)
— ¢, kP]| - kP[e, kP tan(kPd,) + €, kP tan (kPd, )]
Dige = kP [k P tan (kPd,) + kL tan (kPd,)] + k@
tan (k9d;) [ kP — kP tan (kDd, ) tan (kPd, )]

and

ma \?
kO =1/ e, — (7) - k2, i=1,2,3.

REFERENCES

[1] R. A. Pucel, “Design considerations for monolithic microwave
circuits,” TEEE Trans. Microwave Theory Tech., vol. MTT-29, pp.
513-534, June 1981.

[2] R. S. Pengeily, “Hybrid vs. monolithic microwave circuits—
A matter of cost,” Microwave Syst. News, pp. 77-114, Jan. 1983.

3] N. K. Das and D. M. Pozar, “A generalized spectral-domain
Green’s function for multilayer dielectric substrates with applica-
tion to multilayer transmission lines,” IEEE Trans. Microwave
Theory Tech., vol. MTT-35, pp. 326-335, Mar. 1987.

[4] L. Beyne and D. De Zutter, “Green’s function for layered lossy
media with special application to microstrip antennas,” TEEE
Trans. Microwave Theory Tech., vol. 36, pp. 875-881, May 1988.

[5] T. Sphicopoulos, V. Theodoris, and F. Gardiol, “Dyadic Green’s
function for the electromagnetic field in multilayered isotropic
media: An operator approach.” Proc. Inst. Elec. Eng., vol. 132,
pt. H, no. 5 pp. 329-334, Aug. 1985.

[6] C. T. Tai, “Dyadic Green’s function for a rectangular waveguide
filled with two dielectrics,” J. Electromagnenic Waves and Appl.,
vol. 2, no. 3 /4, pp. 245-253, 1988.

[71 L. P. Dunleavy and P. B. Katehi, “A generalized method for
analyzing shielded thin microstrip discontinuities,” IEEE Trans.
Microwave Theory Tech., vol. 36, pp. 1758-1766, Dec. 1988.

[8] L. Dunleavy and P. Katehi, “Shielding effects in microstrip discon-
tinuities,” IEEE Trans. Microwave Theory Tech., vol. 36, pp.
1767-1774, Dec. 1988.

[9] P. B. Katehi and N. G. Alexopoulos, “Frequency-dependent char-
acteristics of microstrip discontinuities in millimeter-wave inte-
grated circuits,” JEEE Trans. Microwave Theory Tech., vol. MTT-
33, pp. 1029-1035, Oct. 1985.

[10] R. W. Jackson and D. M. Pozar, “Full-wave analysis of microstrip
open-end and gap discontinuities,” TEEE Trans. Microwave Theory
Tech., vol. MTT-33, pp. 1036-1042. Oct. 1985.



LIVERNOIS AND KATEHI: A GENERALIZED METHOD FOR DERIVING THE SPACE-DOMAIN GREEN’S FUNCTION

[11] P. Kennis and L. Faucon, “Rigorous analysis of planar MIS
transmission lines,” Electron. Lett., vol. 17, no. 13, pp. 454-456,
June 1981. - )

M. Aubourg, J. Villotte, F. Godon and Y. Garault, “Finite element
analysis of lossy waveguides—Applications to microstrip lines on
semiconductor substrate,” IEEE Trans. Microwave Theory Tech.,
vol. MTT-31,.pp. 326-330, Apr. 1983.

C. Krowne, “Slow-wave propagation in generalized cylindrical
waveguides loaded with a semiconductor,” Int. J. Electron., vol. 58,
no. 2, pp. 249-269, 1985.

C. Tzuang and T. Itoh, “Finite-element analysis of slow-wave
Schottky contact printed lines,” JEEE Trans. Microwave Theory
Tech., vol. MTT-34, pp. 1483-1489, Dec. 1986.

T. Mu and T. Itoh, “Characteristics of multiconductor, asymmetric,
slow-wave microstrip transmission lines,” TEEE Trans. Microwave
Theory Tech., vol. MTT-34, pp. 1471-1477, Dec. 1986.

[12]

(13]

(14]

[15]

[16]
crostrip line on Si-SiO, system,” IEEE Trans. Microwave Theory
Tech., vol. MTT-19, pp. 869-881, Nov. 1971. .

C. T. Tai, Dyadic Green’s Functions in Electromagnetic Theory.
Scranton, PA: Intext, 1971.

R. Harrington, Time Harmonic Electromagnetic Fields. New York:
McGraw-Hill, 1961.

K. Gupta, R. Garg, and 1. Bahl, Microstrip Lines and Slotlines.
Norwood, MA: Artech House, 1979.

E. Yamashita and K. Atsuki, “Analysis of microstrip-like transmis-
sion lines by nonuniform discretization of integral equations,”
IEEE Trans. Microwave Theory Tech., vol. MTT-24, pp. 195-200,
Apr. 1976.

(171
18]
(19]

[20]

e

Thomas G. Livernois was born in Grosse Pointe, MI, on July 2, 1962.
He received the B.S.EE. degree (with honor) in 1984 from Michi-
gan Technological University and the M.SEE. degree in 1986 from

H. Hesegawa, M. Furukawa, and H. Yanai, “Properties of mi-’

1767

Michigan State University. Since September
1987, he has been working toward the Ph.D.
degree in electrical engineering at the University
of Michigan, Ann Arbor. His research interests
are in the areas of integrated microwave circuits
and dielectric waveguides.

From February 1987 to May 1989 he was an
Instructor in electrical engineering at Lawrence
Technological University, Southfield, ML

Mr. Livernois is a member of the Engineering
Society of Detroit, Lambda Chi Alpha, and an
associate member of Sigma Xi.

Pisti B. Katehi (5’81-M’84) received the B.SE.E. degree from the Na-
tional Technical University of Athens, Greece, in 1977 and the M.S.E.E.
and Ph.D. degrees from the University of California, Los Angeles, in
1981 and 1984 respectively. :

In September 1984 she joined the faculty of the EECS Department of
the University of Michigan, Ann Arbor, as an Assistant Professor. Since
then, she has been involved in the modeling and computer-aided design
of millimeter-wave and near-millimeter-wave monolithic circuits and an-
tennas. . '

In 1984 Dr. Katehi received the W. P. King Award and in 1985 the
S. A. Schelkunoff Award from the Antennas and Propagation Society. In
1987 she received an NSF Presidential Young Investigator Award and a
Young Scientist Fellowship awarded from URSI. Dr. Katehi is a member
of IEEE AP-S, MTT-S and Sigma Xi.




